Wednesday 22 November 2017

Forklar The Forskjellene Mellom Bevegelig Gjennomsnitt Og Eksponensielle Utjevnings Modeller


Eksponensiell utjevning forklart. Kopier Copyright. Innhold på InventoryOps er opphavsrettsbeskyttet og er ikke tilgjengelig for republisering. Når folk først møter begrepet eksponentiell utjevning, tror de kanskje det høres ut som et helvete med mye utjevning. uansett utjevning er. De begynner deretter å forestille seg en komplisert matematisk beregning som sannsynligvis krever en grad i matematikk å forstå, og håper det er en innebygd Excel-funksjon tilgjengelig hvis de noensinne trenger å gjøre det. Virkeligheten av eksponensiell utjevning er langt mindre dramatisk og langt mindre traumatisk. Sannheten er at eksponensiell utjevning er en veldig enkel beregning som gir en ganske enkel oppgave. Det har bare et komplisert navn fordi det som teknisk sett skjer som følge av denne enkle beregningen, er faktisk litt komplisert. For å forstå eksponensiell utjevning, bidrar det til å starte med det generelle begrepet utjevning og et par andre vanlige metoder som brukes til å oppnå glatting. Hva er utjevning Utjevning er en svært vanlig statistisk prosess. Faktisk møter vi jevnlig jevne data i ulike former i vårt daglige liv. Når du bruker et gjennomsnitt for å beskrive noe, bruker du et glatt nummer. Hvis du tenker på hvorfor du bruker et gjennomsnitt for å beskrive noe, vil du raskt forstå begrepet utjevning. For eksempel har vi nettopp opplevd den varmeste vinteren på rekord. Hvordan kan vi kvantifisere dette Vel, vi begynner med datasett av de daglige høye og lave temperaturene for perioden vi kalder Vinter for hvert år i innspilt historie. Men det gir oss en mengde tall som hopper rundt ganske mye (det er ikke som hver dag i vinter var varmere enn tilsvarende dager fra alle tidligere år). Vi trenger et nummer som fjerner alt dette hopper rundt fra dataene, slik at vi lettere kan sammenligne en vinter til den neste. Fjerning av hopping rundt i dataene kalles glatting, og i dette tilfellet kan vi bare bruke et enkelt gjennomsnitt for å oppnå glatting. I etterspørselsoversikt bruker vi utjevning for å fjerne tilfeldig variasjon (støy) fra vår historiske etterspørsel. Dette gjør at vi bedre kan identifisere etterspørselsmønstre (primært trend og sesongmessighet) og etterspørselsnivåer som kan brukes til å estimere fremtidig etterspørsel. Støyen i etterspørsel er det samme konseptet som den daglige hoppingen rundt temperaturdataene. Ikke overraskende, den vanligste måten folk fjerner støy fra etterspørselshistorien, er å bruke en enkel gjennomsnittlig, nærmere bestemt et glidende gjennomsnitt. Et glidende gjennomsnitt bruker bare et forhåndsdefinert antall perioder for å beregne gjennomsnittet, og disse periodene beveger seg når tiden går. Hvis jeg for eksempel bruker et 4 måneders glidende gjennomsnitt, og i dag er 1. mai, bruker jeg et gjennomsnitt av etterspørselen som skjedde i januar, februar, mars og april. 1. juni bruker jeg etterspørsel fra februar, mars, april og mai. Vektet glidende gjennomsnitt. Ved bruk av et gjennomsnitt bruker vi samme vekt (vekt) til hver verdi i datasettet. I 4 måneders glidende gjennomsnitt representerte hver måned 25 av glidende gjennomsnitt. Når du bruker etterspørselshistorie for å projisere fremtidig etterspørsel (og spesielt fremtidig trend), er det logisk å komme til den konklusjonen at du vil at nyere historie har større innvirkning på prognosen din. Vi kan tilpasse vår gjennomsnittlige beregning for å bruke ulike vekter til hver periode for å få våre ønskede resultater. Vi uttrykker disse vektene som prosentandeler, og summen av alle vekter for alle perioder må legge opp til 100. Derfor, hvis vi bestemmer oss for å søke 35 som vekten for nærmeste periode i vårt 4 måneders veide glidende gjennomsnitt, kan vi trekke 35 fra 100 for å finne at vi har 65 igjen å dele over de andre 3 periodene. For eksempel kan vi ende opp med en veiing på henholdsvis 15, 20, 30 og 35 i de 4 månedene (15 20 30 35 100). Eksponensiell utjevning. Hvis vi går tilbake til konseptet med å legge vekt på den siste perioden (for eksempel 35 i det forrige eksempelet) og sprer gjenværende vekt (beregnet ved å trekke den siste tidsvekten på 35 fra 100 til 65), har vi de grunnleggende byggeblokkene for vår eksponentielle utjevningsberegning. Den kontrollerende inngangen til eksponensiell utjevningsberegning er kjent som utjevningsfaktoren (også kalt utjevningskonstanten). Den representerer i hovedsak vektingen som er brukt på de siste periodene etterspørselen. Så, hvor vi brukte 35 som vekten for den siste perioden i den vektede glidende gjennomsnittlige beregningen, kunne vi også velge å bruke 35 som utjevningsfaktor i vår eksponensielle utjevningsberegning for å få en lignende effekt. Forskjellen med eksponensiell utjevningsberegning er at i stedet for at vi også må finne ut hvor mye vekt som skal gjelde for hver tidligere periode, blir utjevningsfaktoren brukt til å automatisk gjøre det. Så her kommer eksponentiell del. Hvis vi bruker 35 som utjevningsfaktor, vil vekten av de siste perioder etterspørselen bli 35. Vektingen av de neste siste perioder krever (perioden før den siste) vil være 65 av 35 (65 kommer fra å trekke 35 fra 100). Dette tilsvarer 22,75 vekting for den perioden hvis du gjør matematikken. De neste siste perioder etterspørselen vil være 65 av 65 av 35, som tilsvarer 14,79. Perioden før det vil bli vektet som 65 av 65 av 65 av 35, som tilsvarer 9,61, og så videre. Og dette går videre gjennom alle dine tidligere perioder helt tilbake til begynnelsen av tiden (eller det punktet du begynte å bruke eksponensiell utjevning for det aktuelle elementet på). Du tenker nok det som ser ut som en masse matte. Men skjønnheten i eksponensiell utjevningsberegning er at i stedet for å beregne for hver tidligere periode hver gang du får en ny periode etterspørsel, bruker du bare utgangen av eksponensiell utjevningsberegning fra forrige periode til å representere alle tidligere perioder. Er du forvirret ennå Dette vil gi mer mening når vi ser på den faktiske beregningen Vanligvis refererer vi til utgangen av eksponensiell utjevningsberegning som neste periodesprognose. I virkeligheten trenger den endelige prognosen litt mer arbeid, men i forbindelse med denne spesifikke beregningen vil vi referere til det som prognosen. Eksponensiell utjevningsberegning er som følger: De siste periodene krever multiplikasjon med utjevningsfaktoren. PLUS De siste periodene prognosen multiplisert med (en minus utjevningsfaktoren). D siste perioder krever S utjevningsfaktoren representert i desimalform (så 35 ville bli representert som 0,35). F de siste periodene prognosen (utgangen av utjevningsberegningen fra forrige periode). ELLER (antar en utjevningsfaktor på 0,35) (D 0,35) (F 0,65) Det blir ikke mye enklere enn det. Som vi kan se, er alt vi trenger for datainnganger her de siste perioder etterspørselen og de siste periodene prognosen. Vi bruker utjevningsfaktoren (vekting) til de siste periodene, krever samme måte som vi ville i den veide gjennomsnittlige beregningen. Vi bruker deretter den gjenværende vekten (1 minus utjevningsfaktoren) til de siste periodene. Siden de siste prognoseperiodene ble opprettet basert på forrige perioder, var etterspørselen og de foregående periodene prognosen, som var basert på etterspørselen etter perioden før og prognosen for perioden før det, som var basert på etterspørselen etter perioden før det og prognosen for perioden før det, som var basert på perioden før det. Vel, du kan se hvordan alle tidligere perioder etterspørsel er representert i beregningen uten å faktisk gå tilbake og omberegne noe. Og det var det som kjørte den opprinnelige populariteten til eksponensiell utjevning. Det var ikke fordi det gjorde en bedre jobb med utjevning enn vektet glidende gjennomsnitt, det var fordi det var enklere å regne ut i et dataprogram. Og fordi du ikke trengte å tenke på hva vekting å gi tidligere perioder eller hvor mange tidligere perioder å bruke, som du ville i vektet glidende gjennomsnitt. Og fordi det bare hørtes kjøligere enn vektet glidende gjennomsnitt. Faktisk kan det hevdes at vektet glidende gjennomsnitt gir større fleksibilitet siden du har mer kontroll over vektingen av tidligere perioder. Virkeligheten er at noen av disse kan gi respektverdige resultater, så hvorfor ikke gå med enklere og kjøligere lyd. Eksponensiell utjevning i Excel Leter du se hvordan dette faktisk ville se i et regneark med ekte data. Kopier Copyright. Innhold på InventoryOps er opphavsrettsbeskyttet og er ikke tilgjengelig for republisering. I figur 1A har vi et Excel-regneark med 11 ukers etterspørsel, og en eksponensielt jevn prognose beregnet ut fra den etterspørselen. Ive brukte en utjevningsfaktor på 25 (0,25 i celle C1). Den nåværende aktive cellen er Cell M4 som inneholder prognosen for uke 12. Du kan se i formellinjen, formelen er (L3C1) (L4 (1-C1)). Så de eneste direkte inngangene til denne beregningen er forutgående perioder etterspørsel (Cell L3), de foregående periodene (Cell L4) og utjevningsfaktoren (Cell C1, vist som absolutt cellereferanse C1). Når vi starter en eksponensiell utjevningsberegning, må vi manuelt plukke verdien for den første prognosen. Så i Cell B4, i stedet for en formel, skrev vi bare etterspørselen fra samme periode som prognosen. I Cell C4 har vi vår første eksponensielle utjevningsberegning (B3C1) (B4 (1-C1)). Vi kan da kopiere Cell C4 og lime den inn i Cells D4 til M4 for å fylle resten av våre prognose celler. Du kan nå dobbeltklikke på en hvilken som helst prognosecelle for å se at den er basert på de foregående periodene forutsatt celle og forrige perioder krever celle. Så arver hver etterfølgende eksponensiell utjevningsberegning utgangen av den forrige eksponensielle utjevningsberegningen. Det er hvordan hver tidligere perioder etterspørsel er representert i den siste perioderegningen, selv om denne beregningen ikke direkte refererer til tidligere perioder. Hvis du vil ha lyst, kan du bruke Excels spore presenter funksjon. For å gjøre dette, klikk på Cell M4, deretter på verktøylinjen for bånd (Excel 2007 eller 2010), klikk på Formler-fanen, og klikk deretter Sporprecedenter. Det trekker tilkoblingslinjer til det første nivået av precedenter, men hvis du fortsetter å klikke på Trace Precedents, vil det trekke kontaktlinjer til alle tidligere perioder for å vise deg de arvede forhold. Nå kan vi se hva eksponensiell utjevning gjorde for oss. Figur 1B viser et linjediagram over vår etterspørsel og prognose. Du ser hvordan den eksponentielt glatte prognosen fjerner det meste av den ujevnheten (hoppingen rundt) fra den ukentlige etterspørselen, men klarer fortsatt å følge det som synes å være en oppadgående trend i etterspørselen. Du vil også merke at den glatte prognoselinjen har en tendens til å være lavere enn etterspørselslinjen. Dette er kjent som trendlag og er en bivirkning av utjevningsprosessen. Hver gang du bruker utjevning når en trend er til stede, vil prognosen din ligge bak trenden. Dette gjelder for enhver utjevningsteknikk. Faktisk, hvis vi skulle fortsette dette regnearket og begynne å legge inn lavere etterspørselsnumre (å gjøre en nedadgående trend), ser du etterspørselslinjen slipp, og trendlinjen beveger seg over den før du begynner å følge nedadgående trenden. Det er derfor jeg tidligere nevnte produksjonen fra eksponentiell utjevningsberegning som vi kaller en prognose, fortsatt trenger litt mer arbeid. Det er mye mer å prognose enn å bare utjevne støtene i etterspørselen. Vi må gjøre ytterligere tilpasninger for ting som trendlag, sesongmessighet, kjente hendelser som kan påvirke etterspørselen, etc. Men alt som er utenfor rammen av denne artikkelen. Du vil sannsynligvis også komme inn i begreper som dobbel eksponensiell utjevning og tredobbelt eksponensiell utjevning. Disse begrepene er litt misvisende siden du ikke re-utjevner etterspørselen flere ganger (du kan hvis du vil, men det er ikke poenget her). Disse betingelsene representerer bruk av eksponensiell utjevning på ytterligere elementer i prognosen. Så med enkel eksponensiell utjevning, utjevner du basen etterspørsel, men med dobbel eksponensiell utjevning utjevner du basen etterspørsel og trenden, og med tredoble eksponensiell utjevning utjevner du basen etterspørsel i tillegg til trenden og sesongen. Det andre vanligste spørsmålet om eksponensiell utjevning er hvor får jeg utjevningsfaktoren min? Det er ikke noe magisk svar her, du må teste forskjellige utjevningsfaktorer med dine etterspørseldata for å se hva som gir deg de beste resultatene. Det er beregninger som automatisk kan angi (og endre) utjevningsfaktoren. Disse faller under termen adaptiv utjevning, men du må være forsiktig med dem. Det er rett og slett ikke et perfekt svar, og du bør ikke blindt implementere noen beregning uten grundig testing og utvikle en grundig forståelse av hva denne beregningen gjør. Du bør også kjøre om-scenarier for å se hvordan disse beregningene reagerer på etterspørselsendringer som kanskje ikke eksisterer i etterspørseldataene du bruker for testing. Dataeksemplet jeg brukte tidligere er et veldig godt eksempel på en situasjon der du virkelig trenger å teste noen andre scenarier. Det bestemte dataeksemplet viser en noe konsistent oppadgående trend. Mange store selskaper med svært kostbar prognoseprogramvare fikk store problemer i den ikke så fjerne fortiden da deres programvareinnstillinger som var tweaked for en voksende økonomi, ikke reagerte bra da økonomien begynte å stagnere eller krympe. Ting som dette skjer når du ikke forstår hva dine beregninger (programvare) faktisk gjør. Hvis de forsto deres prognosesystem, ville de ha visst at de trengte å hoppe inn og endre noe når det var plutselige dramatiske endringer i sin virksomhet. Så det har du det grunnleggende om eksponensiell utjevning forklart. Ønsker du å vite mer om bruk av eksponensiell utjevning i en faktisk prognose, sjekk ut boken Inventory Management Explained. Kopier Copyright. Innhold på InventoryOps er opphavsrettsbeskyttet og er ikke tilgjengelig for republisering. Dave Piasecki. er eieroperatør av Inventory Operations Consulting LLC. et konsulentfirma som tilbyr tjenester knyttet til lagerstyring, materialhåndtering og lageroperasjoner. Han har over 25 års erfaring i driftsledelse og kan nås gjennom sin nettside (inventoryops), hvor han opprettholder tilleggsinformasjon. Min BusinessFORECASTING Seasonal Factor - prosentandelen av gjennomsnittlig kvartalsbehov som oppstår i hvert kvartal. Årlig prognose for år 4 er beregnet til å være 400 enheter. Gjennomsnittlig prognose per kvartal er 4004 100 enheter. Kvartalsvisvarsel avg. prognose sesongfaktor. Kausale prognosemetoder Kausale prognosemetoder er basert på et kjent eller oppfattet forhold mellom den faktor som skal prognoses og andre eksterne eller interne faktorer. 1. regresjon: Matematisk ligning relaterer en avhengig variabel til en eller flere uavhengige variabler som antas å påvirke den avhengige variabelen 2. Økonometriske modeller: System av gjensidige regresjonsligninger som beskriver noen sektor av økonomisk aktivitet 3. Inndata-utgangsmodeller: beskriver strømmen fra en sektor av økonomien til en annen, og forutsetter derfor inngangene som kreves for å produsere utganger i en annen sektor 4. simuleringsmodeller MÅLING FORECAST FEIL Det er to aspekter ved prognosefeil å være opptatt av - Bias og nøyaktighet Bias - En prognose er partisk hvis den går mer i en retning enn i den andre - Metoden har en tendens til å være under-prognoser eller over-prognoser. Nøyaktighet - Forecast nøyaktighet refererer til avstanden til prognosene fra den faktiske etterspørselen ignorerer retningen av den feilen. Eksempel: I seks perioder har prognosen og den faktiske etterspørselen blitt sporet. Følgende tabell gir den faktiske etterspørselen D t og prognosefterspørselen F t i seks perioder: Kumulativ sum av prognosefeil (CFE) -20 gjennomsnittlig absolutt avvik (MAD) 170 6 28,33 gjennomsnittlig kvadrat feil (MSE) 5150 6 858.33 standardavvik for prognosefeil 5150 6 29.30 gjennomsnittlig absolutt prosentfeil (MAPE) 83,4 6 13,9 Hvilken informasjon gir hver prognose en tendens til å overskride etterspørsels gjennomsnittlig feil per prognose var 28,33 enheter eller 13,9 av Den faktiske etterspørselsprøvefordelingen av prognosefeil har standardavvik på 29,3 enheter. KRITERIER FOR VELGING AV EN FORSIKLINGSMETODE Mål: 1. Maksimere nøyaktighet og 2. Minimer Bias Potensielle Regler for å velge en prognosemetode for tidsserier. Velg metoden som gir den minste bias, målt ved kumulativ prognosefeil (CFE) eller gir den minste gjennomsnittlige absoluttavviket (MAD) eller gir det minste sporingssignalet eller støtter ledelsens tro på det underliggende mønsteret av etterspørsel eller andre. Det synes åpenbart at noe måling av både nøyaktighet og forspenning skal brukes sammen. Hvordan Hva med antall perioder som skal samples hvis etterspørselen er iboende stabil, foreslås lave verdier av og og høyere verdier av N hvis etterspørselen er ustabil, høye verdier av og og lavere verdier av N er foreslått FOCUS FORECASTING quotfocus forecastingquot refererer til en tilnærming til prognoser som utvikler prognoser ved hjelp av ulike teknikker, plukker deretter prognosen som ble produsert av kvotekvoten til disse teknikkene, hvor kvotekvot bestemmes av noe mål på prognosefeil. FOKUSFORSIKRING: EKSEMPEL For første halvår har etterspørselen etter en varehandel vært 15, 14, 15, 17, 19 og 18 enheter. En forhandler bruker et fokusprognosesystem basert på to prognoseteknikker: et to-års glidende gjennomsnitt og en trendjustert eksponensiell utjevningsmodell med 0,1 og 0,1. Med den eksponentielle modellen var prognosen for januar 15 og trenden gjennomsnittlig ved utgangen av desember var 1. Forhandleren bruker gjennomsnittlig absolutt avvik (MAD) de siste tre månedene som kriterium for å velge hvilken modell som vil bli brukt til å prognose for neste måned. en. Hva blir prognosen for juli og hvilken modell vil bli brukt b. Vil du svare på del a. være forskjellig dersom etterspørselen etter mai hadde vært 14 i stedet for 19Moving gjennomsnittlig og eksponentiell utjevningsmodell Som et første skritt i å bevege seg utover gjennomsnittlige modeller, kan tilfeldige gangmodeller og lineære trendmodeller, ikke-sesongsmønstre og trender bli ekstrapolert ved hjelp av et gjennomsnitt eller utjevningsmodell. Den grunnleggende forutsetningen bak gjennomsnittlige og utjevningsmodeller er at tidsseriene er lokalt stasjonære med et sakte varierende middel. Derfor tar vi et flytende (lokalt) gjennomsnitt for å anslå dagens verdi av gjennomsnittet, og deretter bruke det som prognosen for nær fremtid. Dette kan betraktes som et kompromiss mellom den gjennomsnittlige modellen og den tilfeldige-walk-uten-drift-modellen. Den samme strategien kan brukes til å estimere og ekstrapolere en lokal trend. Et glidende gjennomsnitt kalles ofte en quotsmoothedquot-versjon av den opprinnelige serien, fordi kortsiktig gjennomsnittsverdi medfører utjevning av støtene i den opprinnelige serien. Ved å justere graden av utjevning (bredden på det bevegelige gjennomsnittet), kan vi håpe å finne en slags optimal balanse mellom ytelsen til de gjennomsnittlige og tilfeldige turmodellene. Den enkleste typen gjennomsnittlig modell er. Enkel (likevektet) Flytende gjennomsnitt: Værvarselet for verdien av Y på tidspunktet t1 som er laget på tidspunktet t, er det enkle gjennomsnittet av de nyeste m-observasjonene: (Her og andre steder vil jeg bruke symbolet 8220Y-hat8221 til å stå for en prognose av tidsserien Y som ble gjort så tidlig som mulig ved en gitt modell.) Dette gjennomsnittet er sentrert ved period-t (m1) 2, noe som innebærer at estimatet av det lokale middel vil ha en tendens til å ligge bak den sanne verdien av det lokale gjennomsnittet med ca. (m1) 2 perioder. Således sier vi at gjennomsnittsalderen for dataene i det enkle glidende gjennomsnittet er (m1) 2 i forhold til perioden for prognosen beregnes. Dette er hvor lang tid det vil være å prognostisere prognoser bak vendepunkter i dataene . For eksempel, hvis du er i gjennomsnitt de siste 5 verdiene, vil prognosene være omtrent 3 perioder sent i å svare på vendepunkter. Merk at hvis m1, den enkle glidende gjennomsnittlige (SMA) modellen er lik den tilfeldige turmodellen (uten vekst). Hvis m er veldig stor (sammenlignbar med lengden på estimeringsperioden), svarer SMA-modellen til den gjennomsnittlige modellen. Som med hvilken som helst parameter i en prognosemodell, er det vanlig å justere verdien av k for å oppnå den beste kvote kvoten til dataene, dvs. de minste prognosefeilene i gjennomsnitt. Her er et eksempel på en serie som ser ut til å vise tilfeldige svingninger rundt et sakte varierende middel. Først kan vi prøve å passe den med en tilfeldig walk-modell, noe som tilsvarer et enkelt bevegelige gjennomsnitt på 1 sikt: Den tilfeldige turmodellen reagerer veldig raskt på endringer i serien, men i så måte velger den mye av kvotenivået i data (tilfeldige svingninger) samt quotsignalquot (det lokale gjennomsnittet). Hvis vi i stedet prøver et enkelt glidende gjennomsnitt på 5 termer, får vi et smidigere sett med prognoser: Det 5-tiden enkle glidende gjennomsnittet gir betydelig mindre feil enn den tilfeldige turmodellen i dette tilfellet. Gjennomsnittsalderen for dataene i denne prognosen er 3 ((51) 2), slik at den har en tendens til å ligge bak vendepunktene med tre perioder. (For eksempel ser det ut til at en nedtur har skjedd i perioden 21, men prognosene vender seg ikke til flere perioder senere.) Legg merke til at de langsiktige prognosene fra SMA-modellen er en horisontal rettlinje, akkurat som i tilfeldig gang modell. Således antar SMA-modellen at det ikke er noen trend i dataene. Mens prognosene fra den tilfeldige turmodellen ganske enkelt er lik den siste observerte verdien, er prognosene fra SMA-modellen lik et veid gjennomsnitt av de siste verdiene. De konfidensgrenser som beregnes av Statgraphics for de langsiktige prognosene for det enkle glidende gjennomsnittet, blir ikke større da prognoseperioden øker. Dette er åpenbart ikke riktig. Dessverre er det ingen underliggende statistisk teori som forteller oss hvordan konfidensintervallene skal utvide seg for denne modellen. Det er imidlertid ikke så vanskelig å beregne empiriske estimater av konfidensgrensene for lengre horisontprognoser. For eksempel kan du sette opp et regneark der SMA-modellen skulle brukes til å prognose 2 trinn foran, 3 trinn fremover, etc. i den historiske dataprøven. Du kan deretter beregne utvalgsstandardavvikene til feilene i hver prognosehorisont, og deretter konstruere konfidensintervaller for langsiktige prognoser ved å legge til og trekke ut multipler av riktig standardavvik. Hvis vi prøver et 9-sikt enkelt glidende gjennomsnitt, får vi enda jevnere prognoser og mer av en bremseeffekt: Gjennomsnittsalderen er nå 5 perioder (91) 2). Hvis vi tar et 19-årig glidende gjennomsnitt, øker gjennomsnittsalderen til 10: Legg merke til at prognosene nå faller bakom vendepunkter med ca 10 perioder. Hvilken mengde utjevning er best for denne serien Her er et bord som sammenligner feilstatistikken sin, også et gjennomsnitt på tre sikt: Modell C, 5-års glidende gjennomsnitt, gir den laveste verdien av RMSE med en liten margin over 3 term og 9-sikt gjennomsnitt, og deres andre statistikker er nesten identiske. Så, blant modeller med svært like feilstatistikk, kan vi velge om vi foretrekker litt mer respons eller litt mer glatt i prognosene. (Tilbake til toppen av siden.) Browns Simple Exponential Smoothing (eksponentielt vektet glidende gjennomsnitt) Den enkle glidende gjennomsnittsmodellen beskrevet ovenfor har den uønskede egenskapen som den behandler de siste k-observasjonene, like og fullstendig ignorerer alle foregående observasjoner. Intuitivt bør tidligere data diskonteres på en mer gradvis måte - for eksempel bør den siste observasjonen få litt mer vekt enn 2. siste, og den 2. siste skal få litt mer vekt enn den 3. siste, og så videre. Den enkle eksponensielle utjevning (SES) - modellen oppnår dette. La 945 betegne en quotsmoothing constantquot (et tall mellom 0 og 1). En måte å skrive modellen på er å definere en serie L som representerer dagens nivå (dvs. lokal middelverdi) av serien som estimert fra data til nå. Verdien av L ved tid t beregnes rekursivt fra sin egen tidligere verdi slik: Således er den nåværende glattede verdien en interpolering mellom den forrige glattede verdien og den nåværende observasjonen, hvor 945 styrer nærheten til den interpolerte verdien til den nyeste observasjon. Forventningen for neste periode er bare den nåværende glatte verdien: Tilsvarende kan vi uttrykke neste prognose direkte i forhold til tidligere prognoser og tidligere observasjoner, i en hvilken som helst av de tilsvarende versjoner. I den første versjonen er prognosen en interpolasjon mellom forrige prognose og tidligere observasjon: I den andre versjonen blir neste prognose oppnådd ved å justere forrige prognose i retning av den forrige feilen med en brøkdel av 945. Er feilen gjort ved tid t. I den tredje versjonen er prognosen et eksponentielt vektet (dvs. nedsatt) glidende gjennomsnitt med rabattfaktor 1-945: Interpolasjonsversjonen av prognoseformelen er den enkleste å bruke hvis du implementerer modellen på et regneark: det passer inn i en enkeltcelle og inneholder cellehenvisninger som peker på forrige prognose, forrige observasjon og cellen der verdien av 945 er lagret. Merk at hvis 945 1 er SES-modellen tilsvarer en tilfeldig turmodell (uten vekst). Hvis 945 0 er SES-modellen ekvivalent med den gjennomsnittlige modellen, forutsatt at den første glattede verdien er satt lik gjennomsnittet. (Gå tilbake til toppen av siden.) Gjennomsnittsalderen for dataene i prognosen for enkel eksponensiell utjevning er 1 945 i forhold til perioden for prognosen beregnes. (Dette skal ikke være åpenbart, men det kan enkelt vises ved å vurdere en uendelig serie.) Derfor har den enkle, glidende gjennomsnittlige prognosen en tendens til å ligge bak vendepunktene med rundt 1 945 perioder. For eksempel, når 945 0,5 lag er 2 perioder når 945 0.2 lag er 5 perioder når 945 0,1 lag er 10 perioder, og så videre. For en gitt gjennomsnittlig alder (det vil si mengden lag), er prognosen for enkel eksponensiell utjevning (SES) noe bedre enn SMA-prognosen (Simple Moving Average) fordi den legger relativt mer vekt på den siste observasjonen - dvs. det er litt mer quotresponsivequot for endringer som oppstod i den siste tiden. For eksempel har en SMA-modell med 9 vilkår og en SES-modell med 945 0,2 begge en gjennomsnittlig alder på 5 for dataene i prognosene, men SES-modellen legger mer vekt på de siste 3 verdiene enn SMA-modellen og ved Samtidig er det ikke 8220forget8221 om verdier som er mer enn 9 år gamle, som vist i dette diagrammet. En annen viktig fordel ved SES-modellen over SMA-modellen er at SES-modellen bruker en utjevningsparameter som er kontinuerlig variabel, slik at den lett kan optimaliseres ved å bruke en quotsolverquot-algoritme for å minimere den gjennomsnittlige kvadratfeilen. Den optimale verdien av 945 i SES-modellen for denne serien viser seg å være 0,2961, som vist her: Gjennomsnittsalderen for dataene i denne prognosen er 10,2961 3,4 perioder, noe som ligner på et 6-sikt enkelt glidende gjennomsnitt. De langsiktige prognosene fra SES-modellen er en horisontal rett linje. som i SMA-modellen og den tilfeldige turmodellen uten vekst. Vær imidlertid oppmerksom på at konfidensintervallene som beregnes av Statgraphics, divergerer nå på en rimelig måte, og at de er vesentlig smalere enn konfidensintervallene for den tilfeldige turmodellen. SES-modellen antar at serien er noe mer forutsigbar enn den tilfeldige turmodellen. En SES-modell er faktisk et spesielt tilfelle av en ARIMA-modell. slik at den statistiske teorien om ARIMA-modeller gir et solid grunnlag for beregning av konfidensintervall for SES-modellen. Spesielt er en SES-modell en ARIMA-modell med en ikke-sesongforskjell, en MA (1) og ikke en konstant periode. ellers kjent som en quotARIMA (0,1,1) modell uten constantquot. MA (1) - koeffisienten i ARIMA-modellen tilsvarer mengden 1-945 i SES-modellen. For eksempel, hvis du passer på en ARIMA (0,1,1) modell uten konstant til serien analysert her, viser den estimerte MA (1) - koeffisienten seg å være 0,7029, som er nesten nøyaktig en minus 0,2961. Det er mulig å legge til antagelsen om en konstant lineær trend uten null som en SES-modell. For å gjøre dette oppgir du bare en ARIMA-modell med en ikke-sesongforskjell og en MA (1) - sikt med en konstant, dvs. en ARIMA-modell (0,1,1) med konstant. De langsiktige prognosene vil da ha en trend som er lik den gjennomsnittlige trenden observert over hele estimeringsperioden. Du kan ikke gjøre dette i forbindelse med sesongjustering, fordi sesongjusteringsalternativene er deaktivert når modelltypen er satt til ARIMA. Du kan imidlertid legge til en konstant langsiktig eksponensiell trend for en enkel eksponensiell utjevningsmodell (med eller uten sesongjustering) ved å bruke inflasjonsjusteringsalternativet i prognoseprosedyren. Den aktuelle kvoteringskvoten (prosentvekst) per periode kan estimeres som hellingskoeffisienten i en lineær trendmodell som er montert på dataene i forbindelse med en naturlig logaritme transformasjon, eller det kan være basert på annen uavhengig informasjon om langsiktige vekstutsikter . (Tilbake til toppen av siden.) Browns Lineær (dvs. dobbel) Eksponensiell utjevning SMA-modellene og SES-modellene antar at det ikke er noen trend av noe slag i dataene (som vanligvis er OK eller i det minste ikke altfor dårlig for 1- trinnvise prognoser når dataene er relativt støyende), og de kan modifiseres for å inkorporere en konstant lineær trend som vist ovenfor. Hva med kortsiktige trender Hvis en serie viser en varierende vekstnivå eller et syklisk mønster som skiller seg tydelig ut mot støyen, og hvis det er behov for å prognose mer enn 1 periode framover, kan estimering av en lokal trend også være et problem. Den enkle eksponensielle utjevningsmodellen kan generaliseres for å oppnå en lineær eksponensiell utjevning (LES) modell som beregner lokale estimater av både nivå og trend. Den enkleste tidsvarierende trendmodellen er Browns lineær eksponensiell utjevningsmodell, som bruker to forskjellige glatte serier som er sentrert på forskjellige tidspunkter. Forutsigelsesformelen er basert på en ekstrapolering av en linje gjennom de to sentrene. (En mer sofistikert versjon av denne modellen, Holt8217s, blir diskutert nedenfor.) Den algebraiske form av Brown8217s lineær eksponensiell utjevningsmodell, som den enkle eksponensielle utjevningsmodellen, kan uttrykkes i en rekke forskjellige, men liknende former. Denne standardmodellen er vanligvis uttrykt som følger: La S betegne den enkeltglattede serien som er oppnådd ved å anvende enkel eksponensiell utjevning til serie Y. Dvs. verdien av S ved period t er gitt av: (Husk at, under enkle eksponensiell utjevning, dette ville være prognosen for Y ved periode t1.) Lad deretter Squot betegne den dobbeltslettede serien oppnådd ved å anvende enkel eksponensiell utjevning (ved hjelp av samme 945) til serie S: Endelig prognosen for Y tk. for noe kgt1, er gitt av: Dette gir e 1 0 (det vil si lure litt, og la den første prognosen være den samme første observasjonen) og e 2 Y 2 8211 Y 1. hvoretter prognosene genereres ved å bruke ligningen ovenfor. Dette gir de samme monterte verdiene som formelen basert på S og S dersom sistnevnte ble startet med S 1 S 1 Y 1. Denne versjonen av modellen brukes på neste side som illustrerer en kombinasjon av eksponensiell utjevning med sesongjustering. Holt8217s Lineær eksponensiell utjevning Brown8217s LES-modell beregner lokale estimater av nivå og trend ved å utjevne de siste dataene, men det faktum at det gjør det med en enkelt utjevningsparameter, stiller en begrensning på datamønstrene som den kan passe: nivået og trenden er ikke tillatt å variere til uavhengige priser. Holt8217s LES-modellen løser dette problemet ved å inkludere to utjevningskonstanter, en for nivået og en for trenden. Til enhver tid t, som i Brown8217s modell, er det et estimat L t på lokalt nivå og et estimat T t av den lokale trenden. Her beregnes de rekursivt fra verdien av Y observert ved tid t og de forrige estimatene av nivået og trenden ved to likninger som gjelder eksponensiell utjevning til dem separat. Hvis estimert nivå og trend ved tid t-1 er L t82091 og T t-1. henholdsvis, da var prognosen for Y tshy som ville vært gjort på tidspunktet t-1, lik L t-1 T t-1. Når den faktiske verdien er observert, beregnes det oppdaterte estimatet av nivået rekursivt ved å interpolere mellom Y tshy og dens prognose, L t-1 T t 1, med vekt på 945 og 1- 945. Forandringen i estimert nivå, nemlig L t 8209 L t82091. kan tolkes som en støyende måling av trenden på tidspunktet t. Det oppdaterte estimatet av trenden beregnes deretter rekursivt ved å interpolere mellom L t 8209 L t82091 og det forrige estimatet av trenden, T t-1. ved bruk av vekter av 946 og 1-946: Fortolkningen av trend-utjevningskonstanten 946 er analog med den for nivåutjevningskonstanten 945. Modeller med små verdier på 946 antar at trenden bare endrer seg veldig sakte over tid, mens modeller med større 946 antar at det endrer seg raskere. En modell med en stor 946 mener at den fjerne fremtiden er veldig usikker, fordi feil i trendberegning blir ganske viktig når det regnes med mer enn en periode framover. (Tilbake til toppen av siden.) Utjevningskonstantene 945 og 946 kan estimeres på vanlig måte ved å minimere gjennomsnittlig kvadratfeil i de 1-trinns prognosene. Når dette gjøres i Statgraphics, viser estimatene seg å være 945 0.3048 og 946 0.008. Den svært små verdien av 946 betyr at modellen tar svært liten endring i trenden fra en periode til den neste, så i utgangspunktet prøver denne modellen å estimere en langsiktig trend. I analogi med begrepet gjennomsnittlig alder av dataene som brukes til å estimere det lokale nivået i serien, er gjennomsnittsalderen for dataene som brukes til estimering av lokal trenden, proporsjonal med 1 946, men ikke akkurat lik den . I dette tilfellet viser det seg å være 10 006 125. Dette er et svært nøyaktig tall, forutsatt at nøyaktigheten av estimatet av 946 er virkelig 3 desimaler, men det er av samme generelle størrelsesorden som prøvestørrelsen på 100, så denne modellen er i gjennomsnitt over ganske mye historie i estimering av trenden. Prognoseplanet nedenfor viser at LES-modellen anslår en litt større lokal trend i slutten av serien enn den konstante trenden som er estimert i SEStrend-modellen. Også den estimerte verdien på 945 er nesten identisk med den som oppnås ved å montere SES-modellen med eller uten trend, så dette er nesten den samme modellen. Nå ser disse ut som rimelige prognoser for en modell som skal estimere en lokal trend. Hvis du 8220eyeball8221 ser dette, ser det ut som om den lokale trenden har vendt nedover på slutten av serien. Hva har skjedd Parametrene til denne modellen har blitt estimert ved å minimere den kvadriske feilen på 1-trinns prognoser, ikke langsiktige prognoser, i hvilket tilfelle trenden gjør ikke en stor forskjell. Hvis alt du ser på er 1-trinns feil, ser du ikke det større bildet av trender over (si) 10 eller 20 perioder. For å få denne modellen mer i tråd med øyehals ekstrapoleringen av dataene, kan vi manuelt justere trendutjevningskonstanten slik at den bruker en kortere basislinje for trendestimering. Hvis vi for eksempel velger å sette 946 0,1, er gjennomsnittsalderen for dataene som brukes til å estimere den lokale trenden 10 perioder, noe som betyr at vi gjennomsnittsverdi trenden over de siste 20 perioder eller så. Here8217s hva prognosen tomten ser ut hvis vi setter 946 0,1 mens du holder 945 0.3. Dette ser intuitivt fornuftig ut på denne serien, selv om det er sannsynlig farlig å ekstrapolere denne trenden mer enn 10 perioder i fremtiden. Hva med feilstatistikken Her er en modell sammenligning for de to modellene vist ovenfor, samt tre SES-modeller. Den optimale verdien av 945. For SES-modellen er ca. 0,3, men tilsvarende resultater (med henholdsvis litt mer responstid) oppnås med 0,5 og 0,2. (A) Holts lineær eksp. utjevning med alfa 0,3048 og beta 0,008 (B) Holts lineær eksp. utjevning med alfa 0,3 og beta 0,1 (C) Enkel eksponensiell utjevning med alfa 0,5 (D) Enkel eksponensiell utjevning med alfa 0,3 (E) Enkel eksponensiell utjevning med alfa 0,2 Deres statistikk er nesten identisk, slik at vi virkelig kan velge på grunnlag av 1-trinns prognosefeil i dataprøven. Vi må falle tilbake på andre hensyn. Hvis vi sterkt tror at det er fornuftig å basere dagens trendoverslag på hva som har skjedd i løpet av de siste 20 perioder eller så, kan vi gjøre en sak for LES-modellen med 945 0,3 og 946 0,1. Hvis vi ønsker å være agnostiker om det er en lokal trend, kan en av SES-modellene være enklere å forklare, og vil også gi mer mid-of-the-road prognoser for de neste 5 eller 10 periodene. (Tilbake til toppen av siden.) Hvilken type trend-ekstrapolering er best: Horisontal eller lineær Empirisk bevis tyder på at hvis dataene allerede er justert (om nødvendig) for inflasjon, kan det være uhensiktsmessig å ekstrapolere kortsiktig lineær trender veldig langt inn i fremtiden. Trender som tyder på i dag, kan løsne seg i fremtiden på grunn av ulike årsaker som forverring av produkt, økt konkurranse og konjunkturnedganger eller oppgang i en bransje. Av denne grunn utfører enkel eksponensiell utjevning ofte bedre ut av prøven enn det ellers kunne forventes, til tross for sin kvadratiske kvadratiske horisontal trend-ekstrapolering. Dampede trendmodifikasjoner av den lineære eksponensielle utjevningsmodellen brukes også i praksis til å introdusere en konservatismeddel i sine trendprognoser. Den demonstrede LES-modellen kan implementeres som et spesielt tilfelle av en ARIMA-modell, spesielt en ARIMA-modell (1,1,2). Det er mulig å beregne konfidensintervall rundt langsiktige prognoser produsert av eksponentielle utjevningsmodeller, ved å betrakte dem som spesielle tilfeller av ARIMA-modeller. (Pass på: ikke alle programmer beregner konfidensintervaller for disse modellene riktig.) Bredden på konfidensintervaller avhenger av (i) RMS-feilen i modellen, (ii) type utjevning (enkel eller lineær) (iii) verdien (e) av utjevningskonstanten (e) og (iv) antall perioder fremover du forutsetter. Generelt sprer intervallene raskere da 945 blir større i SES-modellen, og de sprer seg mye raskere når lineær snarere enn enkel utjevning brukes. Dette emnet blir diskutert videre i ARIMA-modellene i notatene. (Gå tilbake til toppen av siden.)

No comments:

Post a Comment